

The New Millennium Program

Towards a Spacecraft on a Chip

Leon Alkalai
Jet Propulsion Laboratory
tel. 818 354 5988
email: leon@cs.jpl.nasa.gov

Goldin Briefing Page 1 1/31/96

Outline:

- 1. A Historic Perspective
- 2. A Vision for the New Millennium
- Integrated Product Development Team (IPDT)
 Technology Roadmap
 - 3D VLSI Architecture Technology Development
 - Low Power Electronics Technology Development
- 4. Deep-Space 1 and 2 Avionics Architectures
- 5. Customers and Partners

Goldin Briefing Page 2 1/31/96

A Historic Perspective

Goldin Briefing Page 3 1/31/96

A Historic Perspective

Perhaps more than any other single technology of the 20th century, semiconductor microelectronics technology has transformed almost every aspect of modern society:

- Information Technologies
- Transportation
- Communication
- Science and Education
- Medicine
- Design, automation, and manufacturing
- Entertainment

Goldin Briefing Page 5 1/31/9

A Historic Perspective

Stone Age

Goldin Briefing Page 6

Bronze Age

3000 BCE East Anatolia 1000 BCE Middle East

Iron Age

Middle East, Europe

Silicon Age

Stone, Bronze, Iron, Silicon Age

1948

Silicon Valley, USA

A Vision for the New Millennium

Goldin Briefling Page 7 1/31/96

Vision: The Next 25 years

"Every 18 months microprocessors double in speed. Within 25 years, one computer will be as powerful as all those in the Silicon Valley."

> David A. Patterson Professor, UC Berkeley Scientific American September 1995

Goldin Briefing Page 8 1/31/96

Towards the Second Generation Spacecraft

Goldin Briefing Page 10 1/31/9

Vision: A Spacecraft on a Chip

 $\begin{array}{c} VOYAGER \\ VOLUME = 62 \ m^3 \\ MASS \ (DRY) = 986 \ kg \\ POWER = 430 \ W \end{array}$

SYSTEM ON A CHIP

PowerPC 620 5 • 10⁶ Transistors

1/31/96

Goldin Briefing Page 11

From Subsystems to Macro-Cells

Programmable macro-cells on a single chip

- CAD Synthesis of Spacecraft "System"
- Integration and test has a new meaning
- Spacecraft cabling is replaced by sub-micron metal interconnect
- How many Spacecraft can fit on one wafer?

Goldin Briefing Page 12 1/31/96

Increasing functional density while reducing cost per function.

Goldin Briefing Page 14 1/31/96

The basis for the sustained growth of the semiconductor industry is the exponential growth of functional density and the 30% per year, per function reduction in cost due to:

- Design innovation
- Device shrinkage
- Wafer size increase
- Die size increase
- Yield improvement
- Improvement in capital equipment utilization

Goldin Briefing Page 15 1/31/9

The semiconductor industry yield is at an all-time high!

Goldin Briefing Page 16 1/31/96

Electrical Defect Density

Year	'95	'98	'01	'04	'07	'10
Feature Size (µm)	0.35	0.25	0.18	0.13	0.10	0.07
d/m²	240	160	140	120	100	25

Yield 90%

Source: SIA '95

[d/m²] is a mathematical model based on statistical evidence of those defects that cause a chip to electrically fail. It is independent of chip size.

Goldin Briefing Page 17 1/31/9

Improving functional reliability.

Goldin Briefing Page 18

Integrated Product Development Team Technology Roadmap

Goldin Briefing Page 20 1/31/9

Key Capability Needs for the 21st Century

- Develop reduction of all spacecraft electronics mass,
 volume and power by two orders of magnitude relative to
 the state-of-the art in space flight computing
- Accelerated insertion of commercial technology, components, and processes into space flight applications for the reduction of the total spacecraft life-cycle cost
- Scaleable and fault-tolerant on-board computing architectures that will enable autonomous spacecraft control and operation, and on-board science data analysis, for the purpose of reducing the total system cost, and increase the mission scientific return.

Goldin Briefing Page 21 1/31/96

Candidate High-Priority Technologies

- Highly integrated and modular 3D avionics architectures amenable to industry standardization
- Integrated power management electronics
- Advanced microelectronics packaging technologies such as Multichip Modules (MCMs), 3d chip stacking, and MCM stacking
- Low power electronics
- High-density low-power data storage technology
- High-bandwidth low-power interfaces
- Scaleable on-board real-time and reliable multiprocessing
- Fault tolerant computing
- Techniques for rapid prototyping

Goldin Briefing Page 22 1/31/96

Industry Roadmap Team

Technology Area	Members		
Semiconductors	MIT/LL - Craig Keast Loral - Bob Delean		
Processors	Loral - Bob Delean AFPL - Captain Ronald Marx (LM) - Gerhard Franz		
Storage	Honeywell - John Samson TRW - Darby Lee tarry		
I/O	TRW - Darby Lee Terry Optivision - Robert Kalman Boeing - Warren Snapp		
Packaging	LM - Gerhard Franz SCC - Nicholas Tenenketges UCSD - Volkan Ozguz GIT - Abhijit Chatterjee		
Power	LM - Gerhard Franz Boeing - Warren Snapp		
Design Automation	USC - Massoud Pedram GIT - Abhijit Chatterjee		

Goldin Briefing Page 23 1/31/96

SEMICONDUCTOR INDUSTRY ASSOCIATION ROADMAP

YEAR OF FIRST DRAM SHIPMENT	1995	1998	2001	2004	2007	2010
MINIMUM FEATURE (μm)	0.35	0.25	0.18	0.13	0.10	0.07
Memory		05/11	40		440	
Bits/Chip (DRAM/Flash)	64M	256M	1G	4G	16G	64G
Cost/Bit @ volume (millicents)	0.017	0.007	0.003	0.001	0.0005	0.0002
Logic (High Volume: Microprocessor)			4014	0=14		
Locig Transistors/cm ² (packed)	4M	7M	13M	25M	50M	90M
Bits/cm ² (cache SRAM)	2M	6M	20M	50M	100M	300M
Cost/Transistor @ volume (millicents)	1	0.5	0.2	0.1	0.05	0.02
Logic (Low Volume: ASIC)						
Transistors/cm² (auto layout)	2M	4M	7M	12M	25M	40M
Non-recurring engineering	0.3	0.1	0.05	0.03	0.02	0.01
cost/transistor (milicents)						
Chip Frequency (MHz)						
On-chip clock, cost-performance	150	200	300	400	500	625
On-chip clock, high-performance	300	450	600	800	1000	1100
Chip-to-board speed, high performance	150	200	250	300	375	475
Chip Size (mm ²)						
DRAM	190	280	420	640	960	1400
Microprocessor	250	300	360	430	520	620
ASIC	450	660	750	900	1100	1400
Power Supply Voltage (V)						
Desktop	3.3	2.5	1.8	1.5	1.2	0.9
Battery	25	1.8 - 2.5	0.9 - 1.8	0.9	0.9	0.9

Goldin Briefing Page 24

1/31/96

1/31/96

Microelectronics Feature Size

SPACE COMPONENT MINIMUM FEATURE SIZE SEMICONDUCTOR ROADMAP

Goldin Briefing Page 25

Packaging Roadmap Summary

- Vision: Towards 3D VLSI
- Metrics: level of integration, size, mass, power density.

• Roadmap: <u>Low-cos</u>	Roadmap: <u>Low-cost 3D MCM + HDI</u>		<u>3D VLSI</u>	
	97	99	01	
Integration	medium	high	very high	
Volume (cc) (dgtl+pwr)	600+1000	400+500	70+100	
Mass (g) (dgtl+pwr)	1000+2000	500+500	300+300	
 Capabilities 	Some HDI	3D HDI	3D HDI	
	Mixed MCM	3D VLSI	3D VLSI	
//Com	MCM/SMT	3D Stack PCBs	3D MCM	
	3D Stack PCBs			
	Si chi		Carrier Substrate 800 μm thick AIN)	
Goldin Briefing Page 27			1/31/96	

3D VLSI Technology Development

• Eliminating the Single Chip Package Bottleneck

Goldin Briefing Page 28 1/31/96

SRAM Array Interconnect

Local
interconnect
for n*, p*
(tungsten)
diffusion
contacts

Yellow

CGióbal iintecconnect ((TiAA((cu)) TTI/TN))

Light Green

Contact
Studs to
global
interconnect
(tungsten)

Goldin Briefing Page 31 1/31/96

NASA's Advanced Flight Computer 33-Chip Multichip Module

Goldin Briefing Page 32

1/31/9

New Millennium Program Office

NASA's 33-Chip Flight Computer Module

- Flight Computer System integrated into a single MCM of 33 chips.
- 3D IC stacking used for SRAM and EEPROM memory.
- Si Substrate for inter-chip connections.
- MCM-D Al metal and SiO2 dielectric.
- Mass < 100 grams (89 grams)
- Volume < 1.5 ci
- AlN 442 leaded package
- Rad-hard, R3000 ISA, TRW RH-32
- 20 MIPS @ 25 MHz and < 12 watts
- Industry partnership: TRW, nCHIP.
- Flight validation on SSSTI 7/96.

Goldin Briefing Page 33

Advanced Flight Computing Program

Goldin Briefing Page 35 1/31/96

Advanced Flight Computing Program

Goldin Briefing Page 36

1/31/96

Low-Power Electronics Technology Development

Goldin Briefing Page 39 1/31/96

Key Drivers for Voltage Scaling

• Reduced Power dissipation, P:

$$P = f \bullet c \bullet v^2 \bullet$$

- Higher Reliability
- Reduced Transistor Channel length
- Extended Battery Lifetime

Goldin Briefing Page 41

1/31/96

1989 1992 1995 1998 2001 2004 2007 2010

- MIT Lincoln Laboratory has production worthy i-line and 248 nm DUV wafer steppers, as well as the world's only 193 nm DUV wafer step and scan system. All three tools are operating in Lincoln's class-10 semiconductor fabrication facility, allowing future deepsubmicrometer technologies to be investigated today.
- This advanced optical lithography capability is currently being used to develop a sub 0.25 μm low power (V_{DD} = 0.9 V) SOI CMOS process technology suitable for a wide range of low power, high performance applications.

Goldin Briefing Page 43 1/31/96

193-nm PROJECTION LITHOGRAPHY

193-nm LITHOGRAPHY SYSTEM

LINCOLN LABORATORY 193-nm EXPOSURE SYSTEM

• SPECIFICATIONS

- ArF EXCIMER LASER SOURCE
- 0.5 NA OPTICS
- 4x REDUCTION PRINTING
- 22 x 32.5 mm EXPOSURE FIELD
- BASED ON SVGL MICRASCAN II STEP AND SCAN

RESOLUTION

- 0.18 TO 0.25 µm WITH CONVENTIONAL PHOTOMASK
- 0.10 µm WITH PHASE-SHIFT PHOTOMASK

• STATUS

- INSTALLED IN MICROELECTRONICS LABORATORY
- HIGH RESOLUTION ACHIEVED OVER FULL FIELD
- OFF-AXIS ALIGNMENT INSTALLED
- AUTOMATIC WAFER HANDLING SYSTEM INSTALLED
- BEING QUALIFIED JOINTLY WITH INDUSTRY

0.20 µm FEATURES

ISOLATED LINES

Goldin Briefing Page 44 1/31/96

SILICON-ON-INSULATOR TECHNOLOGY FOR LOW POWER ELECTRONICS

PROGRAM HIGHLIGHTS:

UTILIZES WORLD'S MOST ADVANCED OPTICAL LITHOGRAPHY TECHNOLOGY.
- INITIAL WORK USING 245-nm LITHOGRAPHY WITH TRANSFER TO 193-nm LITHOGRAPHY

LOW POWER OPERATION, 1 VOLT SUPPLY, 0.3 VOLT THRESHOLDS.

FULLY-DEPLETED DEVICE DESIGN FOR REDUCED PARASITIC CAPACITANCES AND NEAR IDEAL SUBTHRESHOLD SLOPES.

PROCESS HIGHLIGHTS:

50 nm ACTIVE SILICON THICKNESS WITH COMPLETE OXIDE ISOLATION.

DUAL-DOPED POLY FOR COMPLIMENTARY THRESHOLD MATCHING.

SELF-ALIGNED SHALLOW SILICIDE PROCESS WITH OXIDE SPACERS.

ALUMINUM REFLOW CONTACT FILL TECHNOLOGY.

FULLY-DEPLETED, < 0.25 μm , SOI CMOS

n-CHANNEL TRANSISTOR CHARACTERISTICS (W/L = 6 μm/0.25 μm)

DRAIN CURRENT VS DRAIN VOLTAGE

0.25 um RING OSCILLATOR STAGE DELAY

Goldin Briefing Page 45

1/31/96

Low Power Electronics Development Approach:

- Collaborate with ARPA on the ULPE Program
- Work with Industry: Intel, IBM, Motorola
- Work with Academia: USC, GIT, Stanford
- Work with other National Labs: MIT/LL, SNL
- Fly LPE Experiment on DS1:
 0.18μ SOI, 1 volt technology
- Initiate LPE R&D task at JPL in FY 96

Goldin Briefing Page 46 1/31/96

New Millennium Program Office Microelectronics Systems Low Power Electronics

R&D at JPL

- LPE Library Development
- Circuit Design, Simulation, and Test
- Radiation Test and Analysis
- Physics of Failure Analysis
- Reliability modeling and Analysis
- Low-Power Opto-Electronics Development with Optivision (SBIRs 1 and 2), for Low-Power 1773 s/c bus
- Low-Power Systems Design
- Low-Power Design Synthesis

Goldin Briefing Page 47 1/31/96

Deep-Space 1 Avionics Architecture

Goldin Briefing Page 48 1/31/96

Customers and Partnerships

Goldin Briefing Page 52 1/31/96

Pluto Express

Reliability

Low Power

Fault Tolerance

Miniaturization

Goldin Briefing Page 53

